Fast 31P chemical shift imaging using SSFP methods.

نویسندگان

  • O Speck
  • K Scheffler
  • J Hennig
چکیده

Steady-state free precession (SSFP) methods have been very successful due to their high signal and short imaging times. These properties make them good candidates for applications that intrinsically suffer from low signal such as low gamma nuclei imaging. A new chemical shift imaging (CSI) technique based on the SSFP signal formation has been implemented and applied to (31)P. The signal properties of the SSFP CSI method have been evaluated and the steady-state signal of (31)P has been measured in human muscles. Due to the T(2) and T(1) signal dependence of SSFP, the steady-state signal mainly consists of phosphocreatine (PCr). The technique allows fast CSI acquisitions with high SNR of the PCr signal. The SNR gain for PCr over a FLASH-based CSI method is approx. 4-5. Fast in vivo CSI of human muscle with subcentimeter resolution and high SNR is demonstrated at 2 T.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of three reference methods for the measurement of intracellular pH using 31P MRS in healthy volunteers and patients with lymphoma

31P magnetic resonance spectroscopy (31P MRS) can measure intracellular pH (pHi) using the chemical shift difference between pH-dependent inorganic phosphate (Pi) and a pH-independent reference peak. This study compared three different frequency reference peaks [phosphocreatine (PCr), α resonance of adenosine triphosphate (αATP) and water (using 1H MRS)] in a cohort of 10 volunteers and eight p...

متن کامل

Dixon and Chimera: Two methods for fast separation of PFC compounds with small chemical shift difference

Introduction Perfluorocarbon (PFC) emulsions have been widely used for cell tracking studies [1,2] and many other biological applications [3]. In contrast to conventional H contrast agents, F markers provide unambiguous signal in vivo due to the low natural abundance of fluorine in living organisms. Furthermore, fluorine markers can possess a unique spectral signal, a further advantage of F MR....

متن کامل

Fast proton spectroscopic imaging using steady-state free precession methods.

Various pulse sequences for fast proton spectroscopic imaging (SI) using the steady-state free precession (SSFP) condition are proposed. The sequences use either only the FID-like signal S(1), only the echo-like signal S(2), or both signals in separate but adjacent acquisition windows. As in SSFP imaging, S(1) and S(2) are separated by spoiler gradients. RF excitation is performed by slice-sele...

متن کامل

Balanced Binomial-Pulse Steady-State Free Precession (BP-SSFP) for fast, inherently fat suppressed, non-contrast enhanced angiography

Introduction: In balanced SSFP for angiography, blood and muscle are inherently differentiated via the T2/T1 contrast. Fat signal suppression, however, relies on contrast preparation or chemical shift manipulation. The disadvantages of the former include regular interruption of the steady state MR signal, and fat signal regrowth during data acquisition. The latter can be divided into multiple v...

متن کامل

Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry.

A method is presented for the rapid acquisition of frequency maps based on multiecho balanced steady-state free precession (balanced SSFP, fast imaging with steady precession (True FISP), fast imaging employing steady-state excitation (FIESTA), or balanced fast field echo (FFE)). This technique was applied to measure temperature changes within a gel phantom based on the temperature-sensitive wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2002